

Water savings and water use efficiency: What it is required beyond precision irrigation

Diego S. Intrigliolo*

Centro de Investigaciones sobre Desertificación (CIDE), Valencia (Spain)

CSIC-UV-GVA

*email: diego.intrigliolo@csic.es

Acknoledgements

The Team!

CIDE: R. Ferrer, I. Buesa, R. López, A. Yeves, A. Montoro, P. Freire, J.M. Ramirez, J.Martinez, D. Sacristan, E. Cámara

IVIA, IMIDA, UPNA y UIB: L. Bonet, F. Sanz, D. Guerra, J.G. Pérez, E.

Badal, G. Santesteban, C. Miranda, J.M. Escalona

UCLM Albacete: J.M. Sanchez, M.A. Moreno, R. Ballesteros

The Funds!

Agencia Estatal de Investigación

Upgrape, DiverGrape, Intermed, Checkrigation

European Union

FruitCrews, SusCrop (DiverGrape)

GVA-AVI and GO-MAPA

Tragua, GONuts, Prerivid

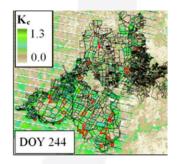
Contracts with private companies

DO Utiel-Requena, Repsol (COCREA), Biogard

Finançat per la Unió Europea

Index talk

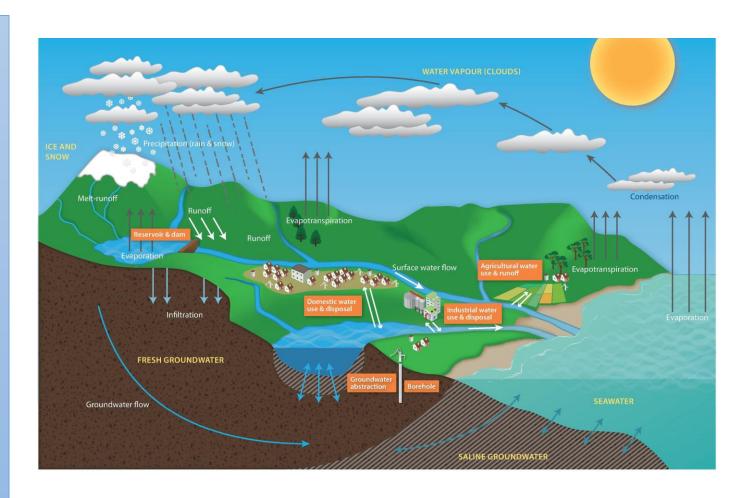
- MATERIADOURICIOUDS


 Reconstructive States for States water flow

 STANATER

 STANATER

 STANATER
- 1. Water use efficiency versus water savings
- 2. Tools for increasing on-farm water use efficiency
- 3. Precision irrigation avenues
- 4. Beyond precision irrigation
- 5. Integrated water management (nexus approach and governance)



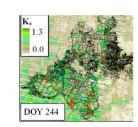
Looking beyond our orchards & vineyards

- On-farm irrigation water use efficiency (WUE) requires that most of water applied to a farm is used for evapotranspiration (ET)
- Deep percolation or surface run-off are minimized.
- When considering the whole basin, the on-farm inefficiencies are recovered downstream or in the aquifer (with lower quality)
- Water conservation, at the basin level, requires developing strategies for reducing the consumptive orchard water use

First step for WUE is to precisely know ET

Soil water balance

Single tree transpiration and soil evaporation

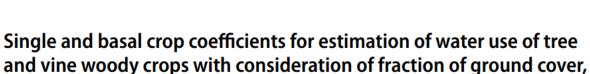

Lysimeters and calibrated sap flows

Energy balance using micrometeorological methods

Eddy covariance, Surface renewal, Bowen ratio

Energy balance using thermal imagery taken with a Drone or with satellites

Models METRIC, SEBAL y
STSEB



Updated Kc values are available

Irrigation Science (2024) 42:1019–1058 https://doi.org/10.1007/s00271-023-00901-7

REVIEW

height, and training system for Mediterranean and warm temperate fruit and leaf crops

iruit and lear crops

Luis S. Pereira · Paula Paredes · Cristina M. Oliveira · Francisco Montoya · Ramón López-Urrea · Maher

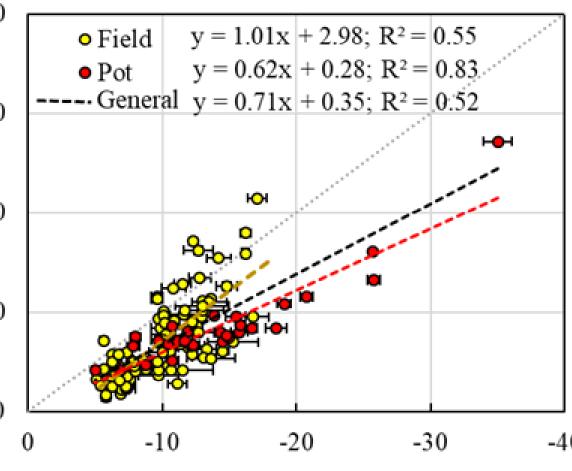
Received: 30 May 2023 / Accepted: 8 November 2023 / Published online: 15 December 2023 © The Author(s) 2023

Abstract

This paper reviews the research on the FAO56 single and basal crop coefficients of fruit trees and vines performed past twenty-five years and focus on Mediterranean and warm temperate trees and vines. Two companion papers (Lot et al., (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with correction of ground cover, height, and training system for temperate climate fruit crops. Irrig Sci (submitted et al. (2023) Single and basal crop coefficients for estimation of water use of tree and vine woody crops with correction of ground cover, height, and training system for tropical and subtropical fruit crops. Irrig Sci (submitted dedicated, respectively, to Temperate and to Tropical and Subtropical trees and vines. The main objective of the update available information on single (K_c) and basal (K_{cb}) standard crop coefficients, and to provide for up completing the FAO56 tabulated K_c and K_{cb} . The K_c is the ratio between non-stressed crop evapotranspiration the grass reference evapotranspiration (ET_o), while K_{cb} is the ratio between crop transpiration (T_c) and ET_o. The

Table 3 Initial, mid-, and end-season standard single and basal crop coefficients for vineyards as related with the training trellis system, fraction of ground cover and height for table and wine grapes with indication of ranges of observed K_c and K_{ch} , and of former tabulations of their standard values

Degree of ground cover, training, and plant density	f _c h Crop stage h		$M_{\rm L}$	$M_{\rm L}$ $F_{\rm r}$	Ranges of observed values		Ranges of previously tabulated values		Proposed values		
						K _{cb}	K _c	K _{cb}	K _c	K _{cb}	K _e
Table grapes (Vitis vinifera)											
Low (Young, <5 years), diverse trellis and trainings	< 0.40	< 1.5	Ini	1.1	1.00	0.50	0.70	0.20	0.30	0.20	0.3
			Mid	1.3	1.00	0.80	0.95	0.55 - 0.60	0.60 - 0.65	0.55	0.6
			End	1.3	1.00	0.65	0.75	0.45 - 0.50	0.50-0.60	0.45	0.5
Medium (T-trellis, Y-trellis, and VSP) (1200–1700 pl/ha)	0.40 - 0.60	1.5 - 2.2	Ini	1.5	0.90	-	-	0.15	0.30	0.25	0.3
			Mid	1.5	0.95	0.82 - 0.88	0.86-0.93	0.75 - 0.90	0.85-0.95	0.85	0.9
			End	1.5	0.70	-	-	0.40 - 0.70	0.45 - 0.75	0.60	0.7
High (Y-trellis and overhead system) (1200–1700 pl/ha)	0.60-0.95	2.0-2.5	Ini	1.5	0.90	0.10-0.50	0.20-0.70	0.20	0.30	0.35	0.4
			Mid	1.5	0.95	0.65-1.11	0.79 - 1.30	0.65-1.05	0.70-1.10	1.05	1.1
			End	1.5	0.70	0.50-0.80	0.75 - 0.98	0.50-0.80	0.55-0.85	0.75	0.8
Wine grapes (Vitis vinifera)											
Very low (Young < 5 years, diverse trellis, and trainings), 2000–3300pl/ha	< 0.15	< 1.5	Ini	1.1	1.00	-	0.60 - 0.63	-	-	0.10	0.3
			Mid	1.1	1.00	0.50	0.55 - 0.81	-	-	0.20	0.3
			End	1.1	1.00	-	-	-	-	0.15	0.3
Low (diverse trellis and trainings), 2000–3300 pl/ha	0.15-0.35	1.5 - 2.0	Ini	1.5	0.95	0.03 - 0.35	0.20 - 0.63	0.25	0.30	0.20	0.3
			Mid	1.5	0.90	0.41 - 0.60	0.46-0.95	0.40 - 0.45	0.45-0.50	0.45	0.6
			End	1.5	0.70	0.05 - 0.43	0.35-0.56	0.30-0.35	0.40-0.45	0.25	0.4
Medium (VSP, single & double Guyot, single & bilateral cordon, GDC, Lyre,	0.35 - 0.50	1.5 - 2.0	Ini	1.5	0.85	0.10 - 0.27	0.15 - 0.37	0.15 - 0.20	0.30-	0.25	0.4
Y-trellis) 2000–3300 pl/ha			Mid	1.5	0.90	0.42 - 0.95	0.50-1.20	0.45 - 0.70	0.50-0.75	0.70	0.8
			End	1.5	0.75	0.34 - 0.41	0.20 - 0.57	0.35-0.50	0.40-0.55	0.45	0.5
High (VSP, GDC, Lyre, Y-trellis, T-trellis, Pergola, QCT) 2000–4300 pl/ha	0.50-0.65	1.5 - 2.5	Ini	1.5	0.90	0.09-0.55	0.20-0.65	-	-	0.30	0.4
			Mid	1.5	0.90	0.60-1.05	0.65-1.10	0.45-0.65	0.50-0.70	0.85	0.9
			End	1.5	0.70	0.25-0.91	0.20-0.65	0.35-0.50	0.40-0.55	0.55	0.6
Very high (Y-trellis, GDC, and overhead system) 2000–4300 pl/ha	> 0.60	1.8 - 2.5	Ini	1.7	0.95	-	-	0.20	0.30	0.35	0.4
			Mid	1.5	0.90	0.98-1.11	1.03-1.16	0.70	0.75	0.95	1.0
			End	1.5	0.60	-	-	0.55	0.60	0.60	0.70

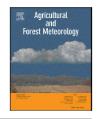

Abbreviations and symbols are defined in list of symbols heading

New sensors for checking tree water status

SWP_{PC} (bar)

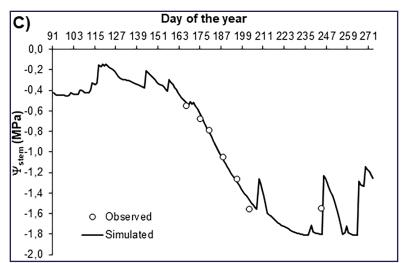
Vanella et al. 2025. Using microtensiometers and other on-the-ground and remote sensing tools to determine olive trees water status. To be submitted to *Scientia Underticulturae* FruitCrews Special Issue

Models and *mega-analysis* to predict water status and responses to it


Agricultural and Forest Meteorology 359 (2024) 110281

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/agrformet

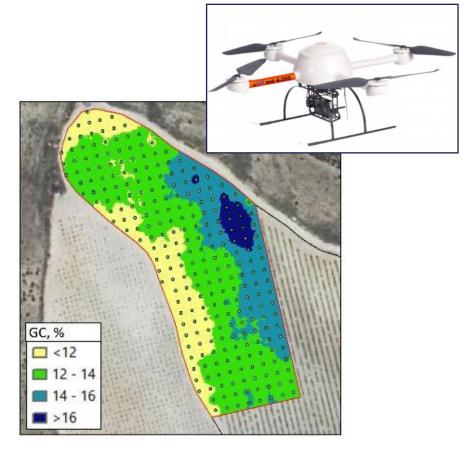


Upgrading and validating a soil water balance model to predict stem water potential in vineyards

José M. Mirás-Avalos ^{a,b,*}, José M. Escalona ^c, Eva Pilar Pérez-Álvarez ^d, Pascual Romero ^e, Pablo Botia ^e, Josefa Navarro ^e, Nazareth Torres ^f, Luis Gonzaga Santesteban ^f, David Uriarte ^g, Diego S. Intrigliolo ^h, I. Buesa ^{c,h}

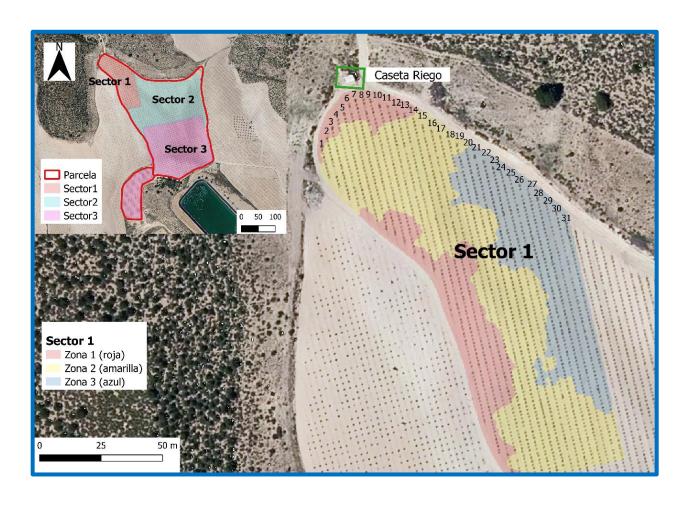


Parameter	Deficit change	Nº rep		Response ratio (RR)	Change (%)	95 % CI
T distances	Detroit change	Lower	Higher	Majorise ratio (rat)		
a) Leaf area	No Deficit to Mild	22	18	· · · · · · · · · · · · · · · · · · ·	-12.82	[-20.15, -4.82]
	Mild to Moderate	72	115		-9.70	[-12.52, -6.80]
	Moderate to High	177	134	⊢● →	-9.54	[-11.76, -7.28]
	High to Severe	81	78		-18.25	[-23.45, -12.69]
b) Pruning weight	No Deficit to Mild	30	36		-7.71	[-13.72, -1.28]
	Mild to Moderate	105	125	⊢	-10.00	[-13.42, -6.44]
	Moderate to High	166	121		-25.96	[-28.27, -23.58]
	High to Severe	96	112	⊢	-11.70	[-15.15, -8.12]
c) Yield	No Deficit to Mild	48	42		12.57	[2.84, 23.22]
	Mild to Moderate	124	177		-14.25	[-16.46, -11.98]
	Moderate to High	233	186	→	-26.60	[-29.14, -23.98]
	High to Severe	117	137		-4.96	[-8.83, -0.92]
d) Bunches per vine	No Deficit to Mild	30	36	——	7.36	[0.01, 15.24]
	Mild to Moderate	118	171	+•+	-8.80	[-10.90, -6.66]
	Moderate to High	224	171	H ⊕ H	-6.74	[-8.50, -4.94]
	High to Severe	106	124		-2.59	[-5.49, 0.40]
e) Bunch weight	No Deficit to Mild	30	36	+•	3.49	[-2.22, 9.52]
	Mild to Moderate	118	171	H ⊕ H	-16.11	[-17.78, -14.41]
	Moderate to High	224	171	⊢	-14.78	[-17.24, -12.25]
	High to Severe	106	124	H	2.60	[-1.31, 6.67]
f) Berry weight	No Deficit to Mild	42	28		-1.90	[-4.30, 0.57]
	Mild to Moderate	114	159	H ⊕ H	-6.77	[-8.50, -5.00]
	Moderate to High	216	170	H O 4	-11.24	[-12.83, -9.63]
	High to Severe	80	85		-5.16	[-7.57, -2.68]
g) Ravaz index	No Deficit to Mild	30	36		18.75	[4.78, 34.57]
	Mild to Moderate	105	125		2.86	[-2.62, 8.64]
	Moderate to High	166	121	⊢	-0.24	[-3.93, 3.59]
	High to Severe	96	112	⊢	16.24	[8.57, 24.45]


New approaches (precision irrigation)

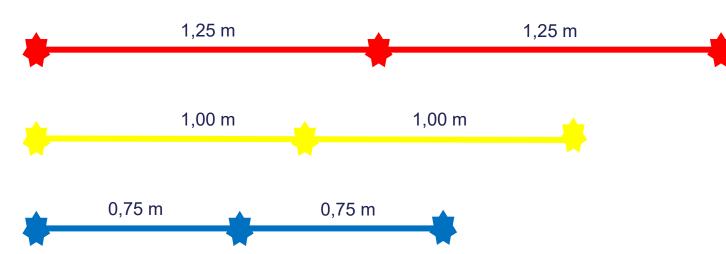
Within an orchard/vineyard there is variability. Different zones could be irrigated differentially

With high spatial resolution remote sensing is possible to characterize the variations in ground cover (GC)



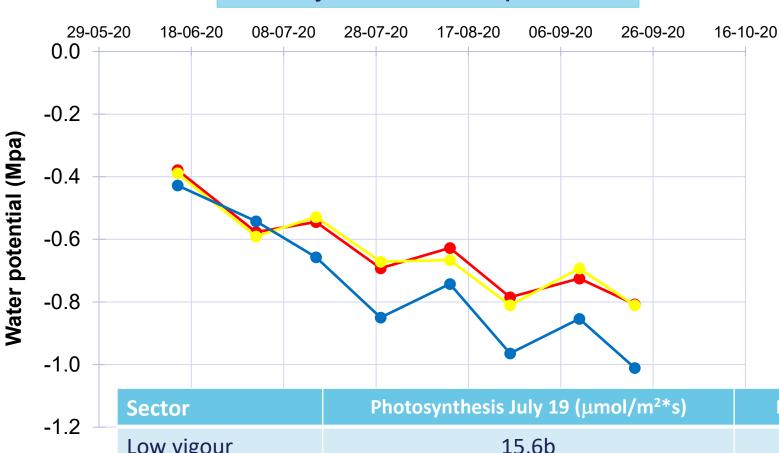
- Monastrell vineyard under VSP
- Sector 1 (≈ 0,9 ha)
- Ground cover estimates obtained from UAV flights performed the previous season

Blue area > Yellow area > Red area


Technology developed by

Same emitters of 3,5 l/h but with different separation among them:

Water application is of 1000 m³/ha in total, but different regimes according to different vigour zones



- > More water in the more vigorous zones
- < Less water in the less vigorous zones

Zone	Yield (Kg/vine)
1 (Red)	3.31
2 (Yellow)	3.33
3 (Blue) More vigorous)	5.78

Sector	Photosynthesis July 19 (μmol/m²*s)	Photosynthesis September 07 (μmol/m²*s)
Low vigour	15,6b	13,6b
Average vigour	15,5 a	15,1 a
High Vigour	17,0a	15,1a

Yield and its components

Sector	Yield (Tn ha ⁻¹)	SST (°Brix)	рН	Total acidity (g L ⁻¹)	IPT (mg g ⁻¹)	Anthocyanins (mg g ⁻¹)
			2020			
Low vigour	7,3 b	23,3 a	3,47 a	6,0 a	2,7 a	1,3 a
Medium Vigor	7,4 b	22,7 a	3,52 a	5,8 a	2.7 a	1,1 b
High Vigour	12,8 a	21,7 a	3,50 a	6,0 a	2,6 a	1,0 b
			2021			
Low vigour	13,1 b	23,1 a	3,60 a	4,9 a	3,8 a	1,3 a
Medium	10,9 b	23,4 a	3,63 a	5,1 a		
Vigor					3,7 ab	1,3 a
High Vigour	15,6 a	22,4 a	3,61 a	5,2 a	3,5 b	1,2 a

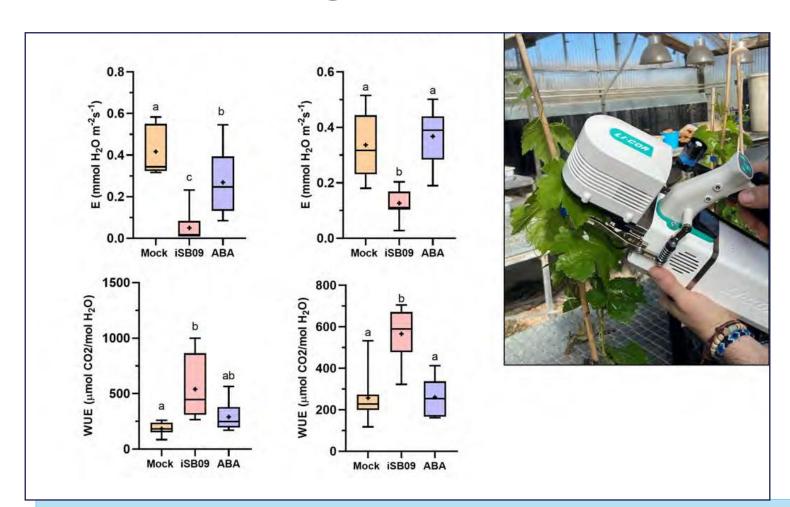
- Yield was higher in the more vigorous zones where irrigation volumes were higher
- More research is required to determine the agronomic reasons affecting the observed variations

Optimum water use efficiency

- By combining all new technologies on-theground and by remote sensing we are able to adjust irrigation efficiency even at the sub-farm level
- Difficulties are still in the technologies to deliver water & nutrients differentially within a farm
- The green water component (soil water holding capacity should be also increased).
- Consumptive water use has to be optimized/reduced for water conservation and avoiding overexploitation

Avenues for reducing ET

Modifying the environmental conditions



Stomatal regulation

Received: 6 September 2024 Revised: 28 October 2024 Accepted: 7 November 2024

DOI: 10.1111/ppl.14635

ORIGINAL RESEARCH

Chemical activation of ABA signaling in grapevine through the iSB09 and AMF4 ABA receptor agonists enhances water use efficiency

¹Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valen

"Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas-Universitat de València-Generalitat Valencia Moncada (Valencia)

³Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Gobierno de la Rioja-Universidad de La Rioja, Finca La Grajera, Logrof

nstituto de Química-Física "Blas Cabrera" (IQF) Consejo Superior de Investigaciones Científicas, Madrid, Spain

⁵Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET-Universida Nacional de Cuyo, Mendoza, Argentina

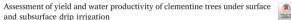
⁶Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Valencia, Spain

The application of an ABA agonist (iSB09) increases leaf level WUE, but we do not know at the whole vine level

FruitCREWS

Reducing soil evaporation – Subsurface drip irrigation

	Irrigation applied (m³/ha)	Yield (kg/tree)	WUE (kg/m³)
Traditional drip irrigation	4121	65,4a	6,1
Subsurface drip irrigation	3457	62,1 a	7,9 (+29%)



Contents lists available at ScienceDirect

Agricultural Water Management

M.A. Martínez-Gimeno^{a,*}, L. Bonet^b, G. Provenzano^c, E. Badal^b, D.S. Intrigliolo^{a,b}, C. Ballester^d

⁹ Dapartament of Irrigation, Center for Applied Biology and Soil Sciences (CERAS-CSIC), Marcia, Spain *Videncies Institute for Agricultural Research (IVIA), Unided Associada of ISSC "Riego en la agricultura mediterrefenea" Valencia, Spain *Papartenea (Applicatular), Roof and Frence Sciences, University of Helmen (IXINA), Jahrmon, Italy of Center for Regional and Farral Rusters (CERF), Deubin University, Griffith, NSW, Australia

Reducing soil evaporation – Soil mulching

Agricultural and Forest Meteorology 291 (2020) 108064

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Effect of using pruning waste as an organic mulching on a drip-irrigated vineyard evapotranspiration under a semi-arid climate

R. López-Urrea^{a,*}, J.M. Sánchez^b, A. Montoro^a, F. Mañas^a, D.S. Intrigliolo^c

- a Instituto Técnico Agronómico Provincial (ITAP), Parque Empresarial Campollano, 2ª Avda. № 61, 02007, Albacete, Spain
- b Dept. of Applied Physics, Regional Development Institute (IDR), Univ. of Castilla-La Mancha, Av. España, s/n, 02071 Albacete, Spain
- ^c Departamento de Riego, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC) Espinardo, Murcia, Spain

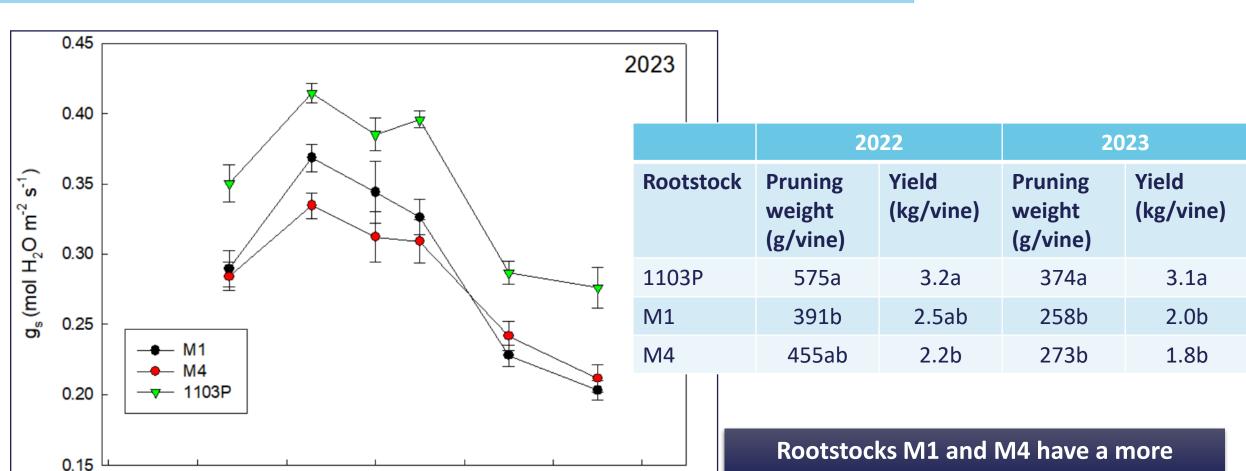
 Plastic mulch reduced ET by 25-29%, but it is not an environmental friendly practice

Genetic avenue

02/06/25

16/06/25

30/06/25


14/07/25

Fecha

28/07/25

11/08/25

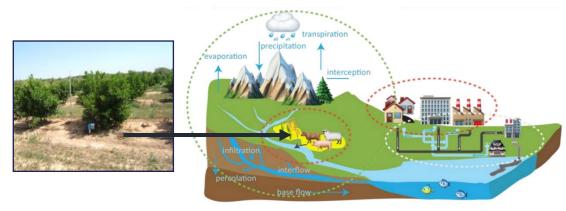
The role of rootstock in determining water use and vigor in grapevines

25/08/25

Rootstocks M1 and M4 have a more conservative use of water (but with lower yield)

Integrated water management

Reusing treated waste water is an opportunity for irrigation


Positive aspects

- Circular economy
- Useful for coastal areas
- Nutrient loads

Negative aspects

- Seasonal availabilities
- Salinity load. Phytotoxicity
- It is not a free source of water



- Re-using treated waste water for irrigation implies that this water is not employed for other ecosystem services...
- Desalinating water might create a structural demand

Integrated water management

Using solar energy for extracting water from underground might result in more water extraction and inefficiency

Limits in water consumption and abstraction have to be established to avoid desertification of territories and land degradation

Take home messages

- Technologies and models are available to optimize on-farm water use efficiency, but theirs uptake by farmers is still low. Why?
- The new avenues for increasing WUE should consider the **on-farm variability** and adapt irrigation rates to the existing variations. **Technically possible?**
- On-farm water use efficiency does not necessarily imply water savings and conservation at the basin level
- In areas with water scarcity, and to avoid overexploitation of resources, agronomic strategies to reduce ET should be considered as well
- An **integrated and nexus approach** is needed if we want to go beyond the scientific agronomic research and consider the **environmental** externalities of the irrigation/water management practices

Water savings and water use efficiency: What it is required beyond precision irrigation

Diego S. Intrigliolo*

Centro de Investigaciones sobre Desertificación (CIDE), Valencia (Spain)

CSIC-UV-GVA

*email: diego.intrigliolo@csic.es

