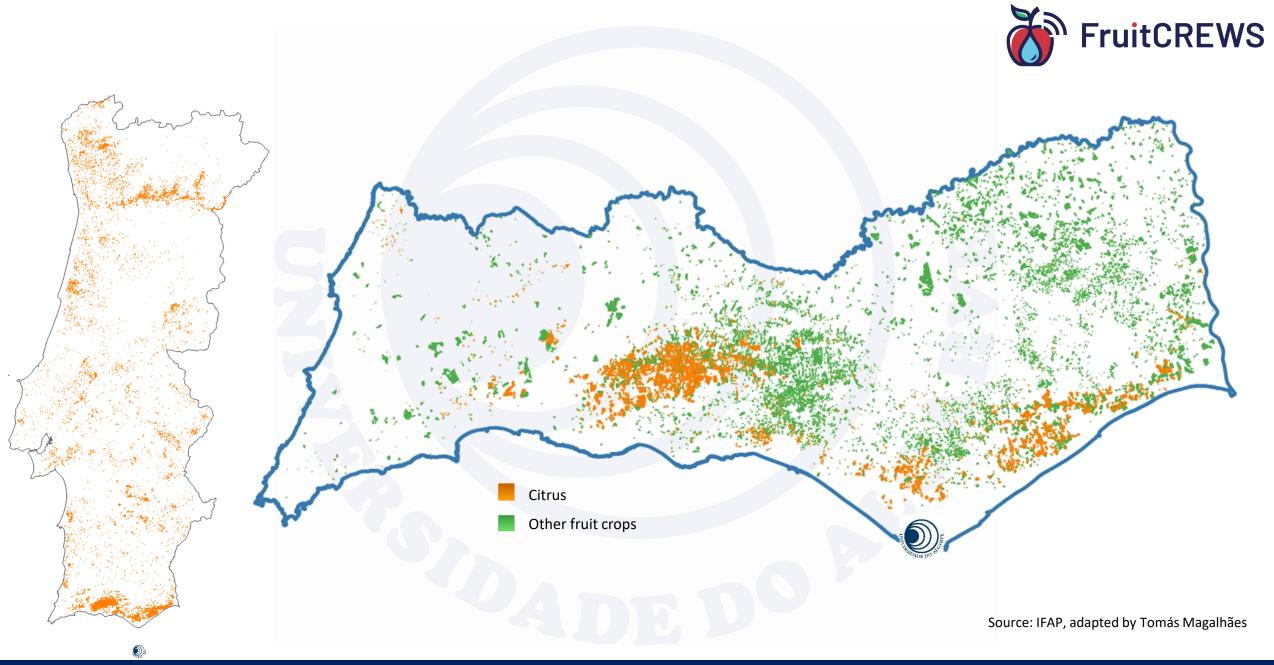


Optimizing irrigation for key fruit crops in the Algarve: a contribution to climate change adaptation

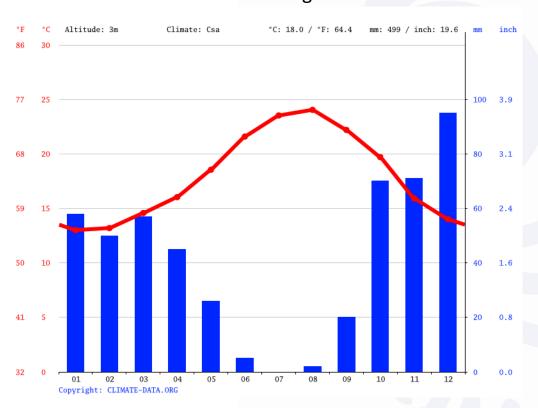
Amílcar Duarte
University of Algarve
Faculty of Sciences and Teccnology
MED - Mediterranean Institute for Agriculture, Environment and Development
CHANGE—Global Change and Sustainability Institute
Naoussa (Greece), 17 June, 2025

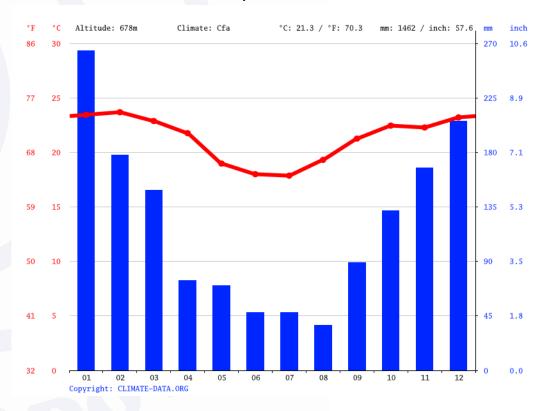


Importance of the different crop groups in the Algarve (2014-2023)

Main agricultural crops	Area (ha)	Production (t)
Cereals for grain	2 397	4 558
Main dried legumes	24	16
Potato	319	7 238
Main crops for industry	0	0
Horticultural cultures	?	?
Main forage crops	1 799	33 088
Main fresh fruits (other than citrus)	3 199	12 162
Berries (Raspberries and others)	271	4 802
Main subtropical fruits (mainly, avocado)	2 500	31 794
Citrus	15 507	323 658
Main nuts	6 081	1 037
Vineyards	1 527	5 142
Olive trees	9 143	4 442

Dodos do INE




Precipitation and temperature

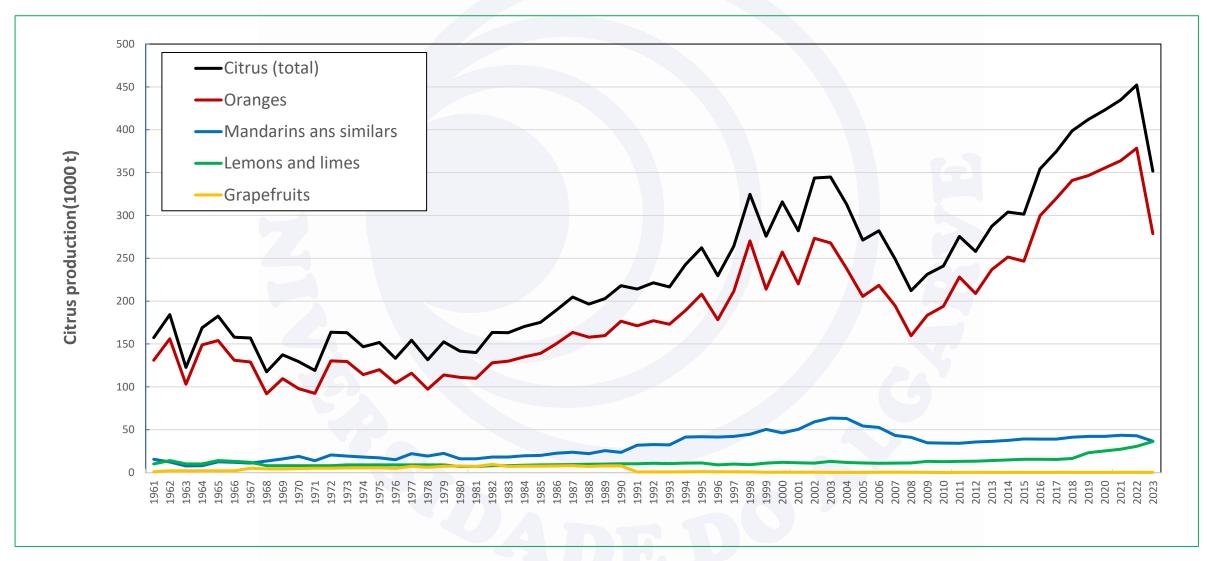
Faro – Portugal

Campinas-Brasil

Usos da água

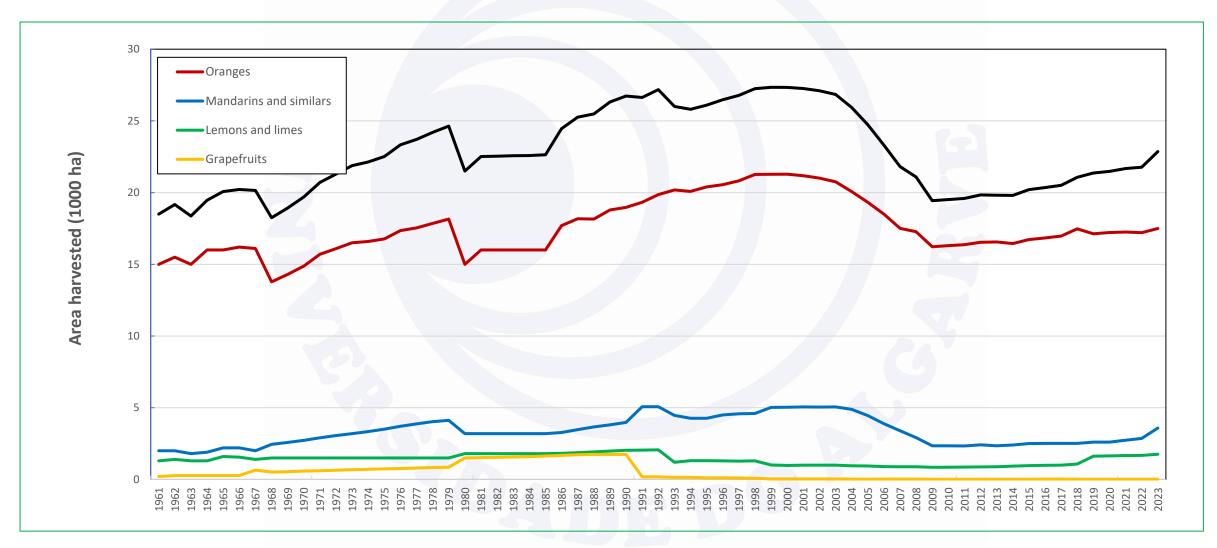
80% de captações particulares

Total ~ 200 hm³/ano



Evolution of Portuguese citrus industry

FAO, 2025. FAOSTAT: Production: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL



Evolution of Portuguese citrus industry

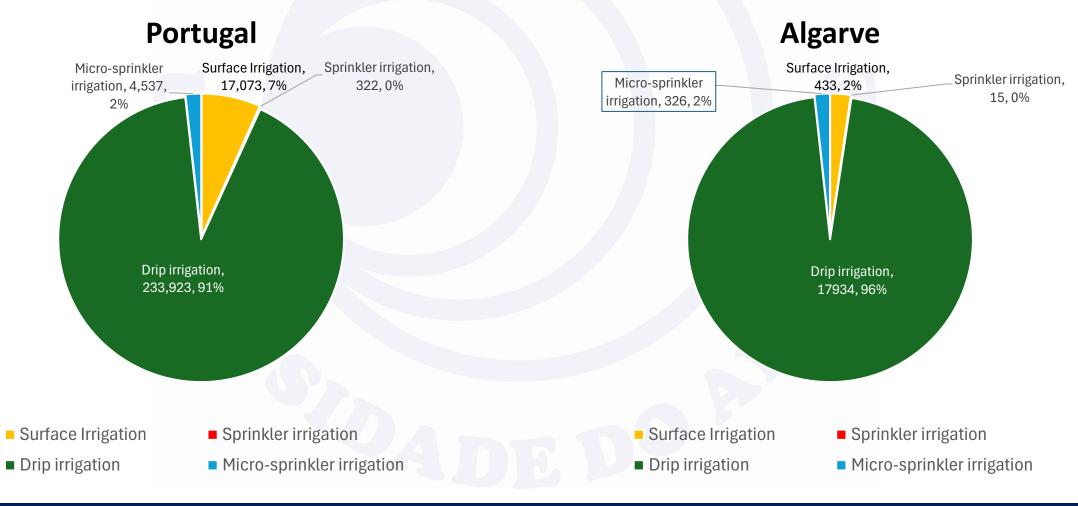
FAO, 2025. FAOSTAT: Production: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL



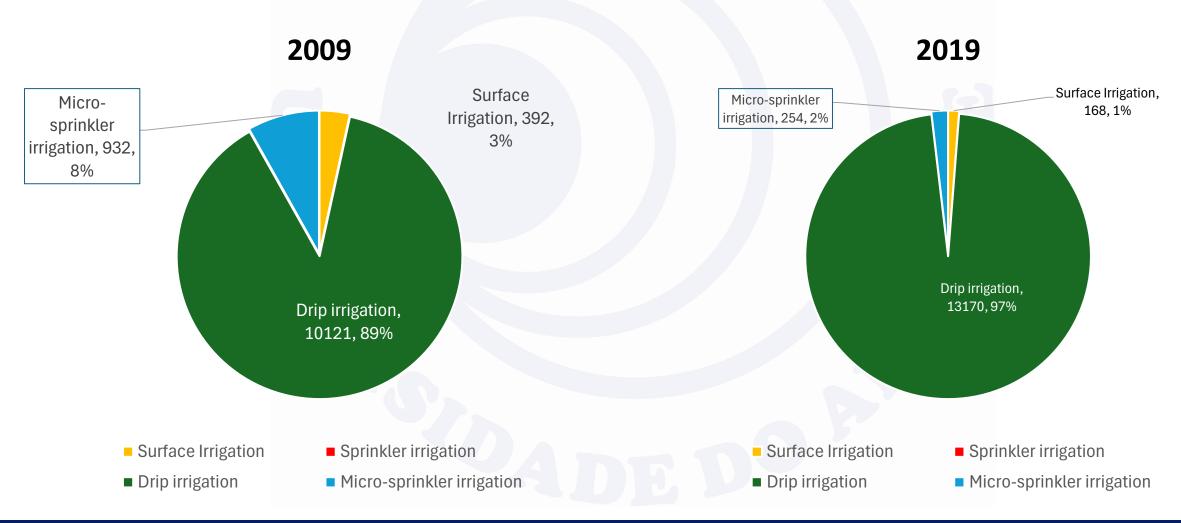


Evolution of Portuguese citrus industry

Evolution of the irrigated area in Algarve (ha)



Irrigation methods in permanent crops (2019)

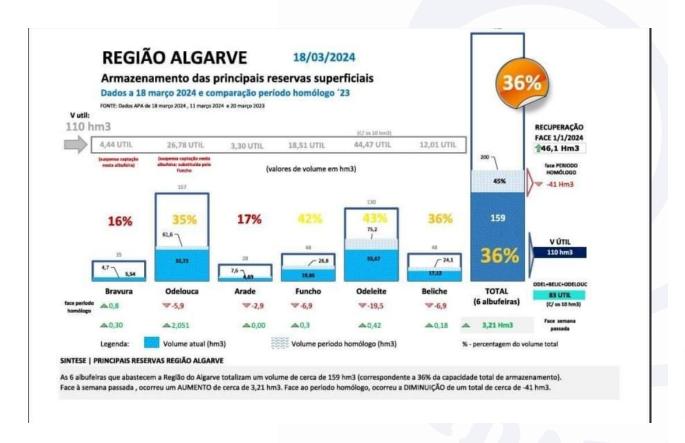


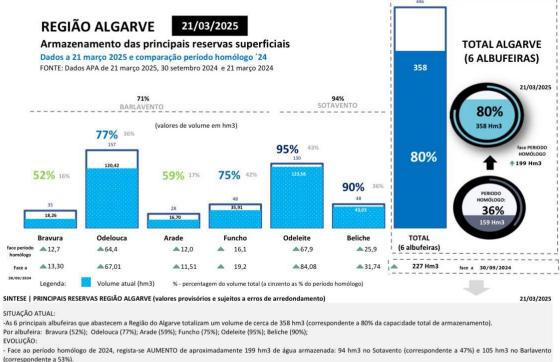
Irrigation methods of citrus orchards in Algarve

In irrigation, the path was long, but traveled at high speed.

Surface irrigation, in 1955.

In the Algarve, almost all citrus are equipped with a drip irrigation system.





The lack of water in the Algarve is a threat to citrus production (agriculture)

FruitCREWS

Article published in 2022

Article

Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes

Manuela Moreira da Silva ^{1,2,3}, Flávia C. Resende ¹, Bárbara Freitas ⁴, Jaime Aníbal ^{1,2}, António Martins ⁵ and Amílcar Duarte ^{4,6,*}

- Institute of Engineering, Campus da Penha, Universidade do Algarve, 8005-139 Faro, Portugal
- CIMA—Centre for Marine and Environmental Research, Campus de Gambelas, 8005-139 Faro, Portugal
- CEiiA—Centre of Engineering and Development, Avenida D. Afonso Henriques 1825, 4450-017 Matosinhos, Portugal
- Faculty of Sciences and Technology, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
- Águas do Algarve, S.A., Águas de Portugal Group, Rua do Repouso, 10, 8000-302 Faro, Portugal
- MED—Mediterranean Institute for Agriculture Environment and Development, 8005-139 Faro, Portugal
- * Correspondence: aduarte@ualg.pt

Citation: Moreira da Silva, M.; Resende, F.C.; Freitas, B.; Aníbal, J.; Martins, A.; Duarte, A. Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal— Environmental Benefits and Carbon Fluxes. Sustainability 2022, 14, 10715. https://doi.org/10.3390/ su141710715

Academic Editor: Dino Musmarra

Received: 24 May 2022 Accepted: 25 August 2022 Published: 28 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Sustainability 2022, 14, 10715. https://doi.org/10.3390/su141710715

https://www.mdpi.com/journal/sustainability

Caracterização química das águas subterrâneas e do efluente tratado ao longo do período experimental (média ± desvio padrão).

⁽²⁾ Normas de Qualidade constantes da Lei Portuguesa 119/2019 e do Regulamento UE 2020/741, para frutas que não estão em contacto direto com a água de irrigação[54]; (3) Limite de Quantificação;

Parameter	Groud water (GW)	Natural Water for Irrigation VMR ⁽¹⁾	Treated effluent(TE)	Quality standard for water reuse (2)	
Ammonia mg L-1 NH ₄ +	0.023 ± 0.020		3.92 ± 1.59	10	
BOD ₅ , 20 °C mg L ⁻¹ O ₂	×		10.1 ± 5.3	≤25	
B mg L ⁻¹	0.08 ± 0.02	0.3	0.16 ± 0.03		
Ca mg L ⁻¹	52.5 ± 1.1		34.1 ± 1.1		
Fe mg L ⁻¹	*	5.0	0.44 ± 0.03	2.0	
Li mg L ⁻¹	×	2.5	0.11 ± 0.01	2.5	
Mg mg L ⁻¹	51.2 ± 11.4		34.9 ± 7.0		
K mg L ⁻¹	35.6 ± 19.4		23.4 ± 11.7		
Na mg L ⁻¹	123 ± 6		142 ± 25		
Chlorides mg L ⁻¹ Cl ⁻	395 ± 138	70	311 ± 94		
EC, 20 °C dS m ⁻¹)	1.45 ± 0.04	1	1.29 ± 0.23		
Phosphates mg L-1 P	<0.125(3)		0.5 ± 0.34	5 (Fósforo total)	
Mn mg L ⁻¹ Mn	*	0.20	0.02 ± 0.01	0.2	
Mo mg L ⁻¹	×	0.005	0.21 ± 0.15	0.01	
Se mg L ⁻¹	×	0.02	<0.01 ⁽³⁾	0.02	
V mg L ⁻¹	x	0.10	<0.01(3)	0.1	
Fluorides mg L ⁻¹	*	1.0	0.15 ± 0.02	2.0	
Nitrates mg L ⁻¹ NO ₃ -	<4 ⁽³⁾	50	4 ± 1	15 (Azoto Total)	
Oxidability mg L-1 O ₂	1.3 ± 0.7		*		
pH Sorenson scale	7.41 ± 0.17	6.5-8.4	7.87 ± 0.14		
SAR	3.6 ± 0.8	8	4.1 ± 0.6		
Sulphates mg L ⁻¹ SO ₄ ²⁻	217 ± 18	575	171 ± 15		
TDS mg L ⁻¹	1044 ± 163	640	830 ± 166		
TSS mg L ⁻¹	1.0 ± 0.8	60	3.5 ± 1.8	≤35	
Turbidity NTU	×		7.5 ± 2.4		
Escherichia coli CFU/100 mL	0 to 2	100	2 to 100	≤100	

⁻⁻ Não referido;

[×] não quantificado;

⁽¹⁾ Valor Máximo Recomendado na Lei 236/98, Anexo XVI;

Carbon emissions related to energy consumption in pumping water for irrigation and fertilisation of orchards.

Water source for irrigation	Power Consumption in water pumping(kW)	Used chemi	cal fertilizers	Carbon emissions		
		Nitrogen kg	Phosphorus kg	kg CO ₂ e	g CO ₂ e. kg ⁻¹ of oranges	
Borehole water (ground water)	3449	870	733	858.968	7.32	
Treated effluent	1734	76.7	683	431.662	3.68	

Advantages of using treated effluents

Benefits in the agroecosystem:

- A irrigation with treated wastewater is technologically feasible for watering citrus orchards and
- It can contribute to improving carbon fluxes, reduce GHG emissions and promote carbon sequestration.
- GHG emissions related to orange production may decrease,
 - Due to reducing energy consumption for pumping water for irrigation,
 - **need to apply smaller amounts of synthetic fertilizers**, since the treated effluent has a higher concentration of nitrates and phosphates than groundwater.

Benefits for the soil:

(The organic matter content in treated effluents is higher than in groundwater and surface water)

- The use of treated effluents promotes an increase in soil OM,
 - Soil water retention,
 - Improvement of plant growth
 - Greater carbon sequestration.
 - Greater fruit production

Advantages of using treated effluents

Other environmental benefits.

- Water reuse avoids overexploitation of coastal aquifers, reducing saline intrusion
- Reduces nutrient discharges in the Ria Formosa, avoiding eutrophication phenomena
- Potential of citrus orchards to sequester GHGs emitted by urban wastewater treatment plants, and its potential contribution to carbon neutrality of urban waste water treatment.

Limitations

- Location of most WWTPs near the coast (away from orchards and low elevations)
- Need for water transport infrastructure (costs)
- Treatment cost.
- Saltwater intrusion into plumbing systems water salinity.
- Legal aspects.

Recovery and Resilience Plan

PRR-C05-i03-I-000010- Valorization of traditional genetic resources: new crops and irrigation water management in the context of climate change.

Entidades executoras do projeto

Financiamento: Este projeto é financiado pela União Europeia através do programa PRR, projeto PRR-C05-i03-I-000010.

Objectives of the AGRO+EFICIENTE project

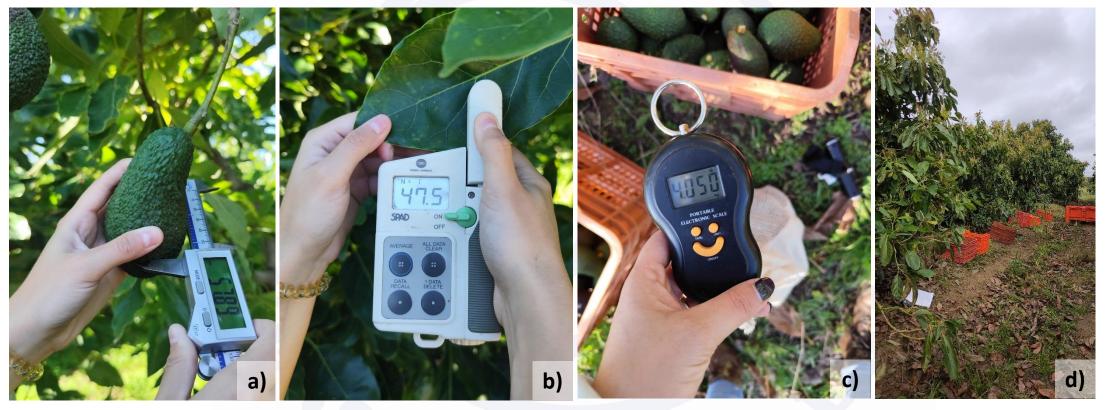
- Improve soil fertility and water retention capacity;
- Reduce irrigation doses, with the use of deficient irrigation techniques or soil cover, without reducing productivity;
- Use species and cultivars with economic viability, better adapted to the scenario resulting from climate change;
- Integrate traditional varieties into the production system, making plant material available to the marketing circuits;
- Carry out promotion, awareness, dissemination, training and editing of publications to communicate the objectives of the projects.

- Cultivar: 'Hass'
- Orchard age: 6 years
- Planting density: 6x4
- <u>Farmer:</u> Diamantino Trindade (Cacela Velha);
- <u>Treatments</u>:
 - CDI: Conventional drip irrigation (100%-ETC);
 - RDI-10: 90%-ETC;
 - RDI-20: 80%-ETC;
 - RDI-30: 70%-ETC.
- Irrigation reduction period: August to October 2024
- <u>Trial assessments</u>:
 - Monitoring of fruit growth, SPAD index, and productivity.
 - Monitoring of soil moisture levels using installed soil probes.
 - Collection of soil samples to determine soil microbiology.

2	3	4	5	6	7	8	9	10	11	12	13
Ensaio d RDC:	le I	П	Ш	IV	V	VI	VII	VIII			
	1	1	1	1	1	1	1	1			
	2	2	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4/85	4	4	4
5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	4790 6	6	6	6	6
7	7 1	7	7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9	9	9	9
10	10	10	10	10	10	10	10	10	10	10	10
										-1	1
11	11	11	11	11	11	11	11	11	11	11	11
12	12	12	12	12	12	12	12	12	12	12	12
13	13	13	13	13	13	13	13	13	13	13	13
14	14	14	14	14	14	14	14 4793	14 4786	14	14 "	U ₁₄
15	15	15	15	15 ⁸	15	15	15	15	15	15	15
16	16	16	16	16	16	16	16	16	16	16	16
17	17	17	17	17	17	17	17	17	17	17	17

Trial's experimental design.

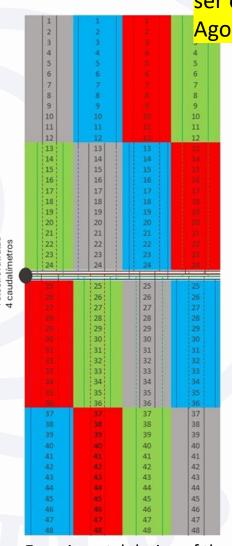
Installation of the RDI trial in avocado orchard, including the water flow meters used to verify the water used for each treatment.


Soil moisture monitoring probes: (a) access tubes for the Diviner-Sentek 2000, and (b) Drill&Drop probes for continuous measurements.

Monitoring of fruit growth (a), SPAD index (b), harvest tracking to determine average fruit weight (c), and yield per tree (d).

Preliminary results from the first year of the regulated deficit irrigation (RDI) trial in avocado under the soil and climate conditions of the Algarve.

Effect of regulated deficit irrigation (RDI) on the average fruit weight of avocado (g).RDI was applied from August 15 to October 8, 2024, resulting in water savings of 518.4 liters per tree for the RDI-10 treatment, 1036.8 liters per tree for RDI-20, and 1555.2 liters per tree for RDI-30.CDI = conventional irrigation (ET $_0$ × Kc);RDI-10 = regulated deficit irrigation with 10% water savings;RDI-20 = regulated deficit irrigation with 20% water savings;RDI-30 = regulated deficit irrigation with 30% water savings. Values with the same letters showed no statistically significant differences (p < 0.05), according to Duncan's multiple range test.



Regulated deficit irrigation (RDI) trial on citrus

- Cultivar: 'D. João' (Orange trees)
- Orchard age: 9 years old
- Planting density: 6x3,5
- Farmer: Frusoal (Cacela Velha)
- **Treatments**
 - CDI: Conventional drip irrigation (100%-ETC);
 - RDI-10: 90%-ETC;
 - RDI-20: 80%-ETC;
 - RDI-30: 70%-ETC.
- Irrigation reduction period: After June fruit drop until pre-harvest.
- Trial assessments:
 - Monitoring of fruit growth, SPAD index, and productivity.
 - Monitoring of soil moisture levels using installed soil probes.
 - Collection of soil samples to determine soil microbiology.

Os resultados do primeiro ano de ensaio só vão

Experimental design of the trial and harvest monitoring for year 0.

Installation of the RDI trial in citrus orchard, including the water flow meters used to verify the water used for each treatment.

Regulated deficit irrigation (RDI) trial on carob trees

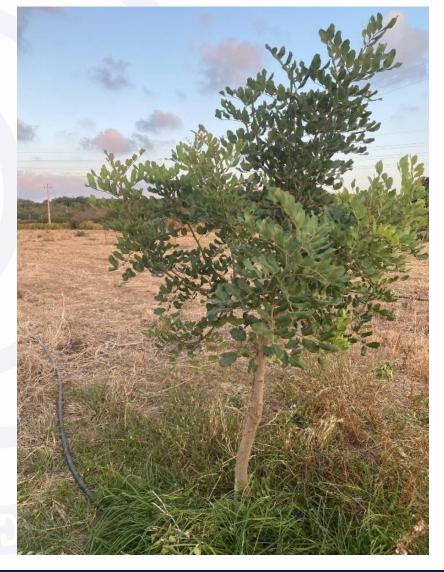
Orchard age: 4 years

Graft: 2023 and 2024

Farmer: Mafalda Sales-Gomes (Meloal, Faro)

Treatments:

- T1: Coventional drip irrigation (100%-ETC)

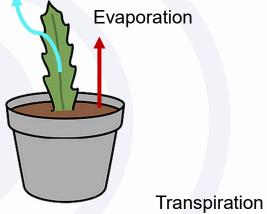

- T2: RDI-25 (75%-ETC)

- T3: RDC-50 (50%-ETC)

- Irrigation reduction period: June to October 2024

- <u>Trial assessments</u>:

- Monitoring the growth of the grafted shoot, the diameter of the stem and the SPAD index.

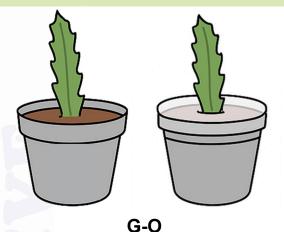

Average daily water consumption (DWC) of pitaya

FruitCREWS

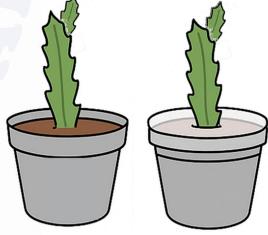
- Crop: Pitaya (Selenicereus undatus).
- Trial location: University of Algarve.
- Methods:
 - Using a weighing lysimeter to measure average daily water consumption (DWC) in pot-grown pitaya plants.
 - Evapotranspiration was measured in uncovered pots, while covered pots assessed plant transpiration.
 - The impact of new vegetative growth on transpiration and evapotranspiration was also assessed.
- <u>Trial period:</u> summer and winter.

To assess crop evapotranspiration

Transpiration



PC-0 **Uncovered pot**



Covered pot

To assess the effect of new growth

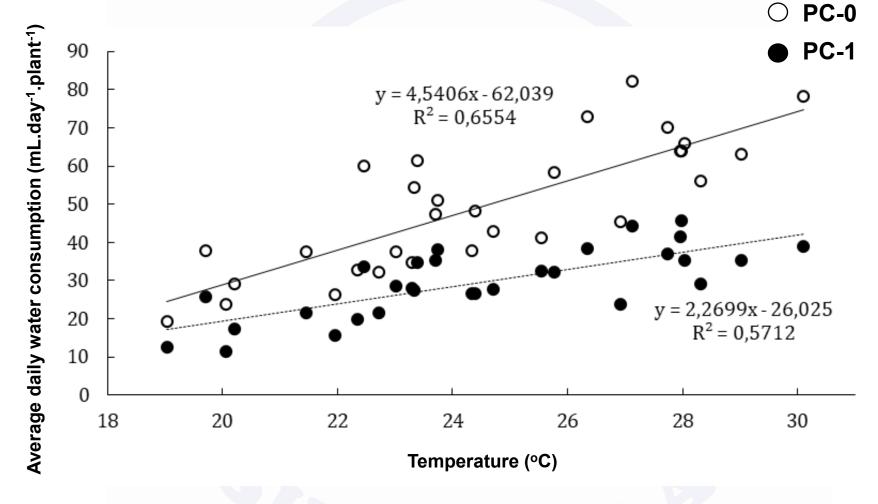
No growth

G-1 Controlled growth

Average daily water consumption (DWC) of pitaya

- Trial assessements:

- The pots were weighed before and after watering using a floor scale (a); a known volume of water was applied (b); and for the growing plants (G-1), the single retained vegetative shoot was measured (c).



Effect of daily mean temperature on daily water consumption in evapotranspiration (PC-0) and transpiration (PC-1) of pitaya plants.

Greenhouse trial to determine the average daily water consumption of dragon fruit

This study revealed that:

- Dragon fruit exhibited remarkably low water use, confirming that its overall evapotranspiration is considerably lower than that of other irrigated fruit crops..
- A significant portion of the total evapotranspiration was attributed to evaporation from bare substrate.
- Daily water consumption is largely independent of pitaya plant growth.
- These results contribute to a better understanding of the water needs of dragon fruit and highlight its exceptional water use efficiency, reinforcing its suitability for cultivation in Mediterranean climates..

The Agro+Eficiente team

Amílcar Duarte UAIg/MED aduarte@ualg.pt

Ana Rita Trindade **UAIg/MED**

Maria Alcinda Neves UAlg

Pedro Correia UAIg/MED

Angélica Mendonça Frusoal

Pedro Godinho Frusoal

Mafalda Sales-Gomes 2Siglas

Diamantino Trindade Mil Plantas

António Marreiros CCDR-Algarve

Luís Cabrita **CCDR-Algarve**

Σας ευχαριστώ

